33 research outputs found

    Изменение представления о цели брака в современных духовных учебных заведениях

    Full text link
    The report is one example of the changing attitudes in the national spiritual education. Briefly describes the main provisions of the philosophy of the marriage of the outstanding Russian canonist of the twentieth century — S. V. Troitsky, his methodological principles of the study of this problem. Focuses on the indirect influence of searches of Russian religious philosophy of the early twentieth century setting to change teaching in theological schoolsВ докладе рассматривается один из примеров смены установок в отечественном духовном образовании. Кратко раскрываются основные положения философии брака выдающегося русского канониста ХХ в. — С. В. Троицкого, его методологические принципы в исследовании данной проблемы. Акцентируется внимание на опосредованном влиянии поисков русской религиозной философии начала ХХ в. на смене установок преподавания в духовных учебных заведения

    A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red

    Get PDF
    A new approach is presented for analysis of microplastics in environmental samples, based on selective fluorescent staining using Nile Red (NR), followed by density-based extraction and filtration. The dye adsorbs onto plastic surfaces and renders them fluorescent when irradiated with blue light. Fluorescence emission is detected using simple photography through an orange filter. Image-analysis allows fluorescent particles to be identified and counted. Magnified images can be recorded and tiled to cover the whole filter area, allowing particles down to a few micrometres to be detected. The solvatochromic nature of Nile Red also offers the possibility of plastic categorisation based on surface polarity characteristics of identified particles. This article details the development of this staining method and its initial cross-validation by comparison with infrared (IR) microscopy. Microplastics of different sizes could be detected and counted in marine sediment samples. The fluorescence staining identified the same particles as those found by scanning a filter area with IR-microscopy

    Novel thermal imaging method for rapid screening of drug-polymer miscibility for solid dispersion based formulation development

    Get PDF
    This study aimed to develop a rapid, simple and inexpensive screening method for selecting the best polymeric candidates possessing high active pharmaceutical ingredient (API) miscibility during the early stages of formulation development of solid dispersion based pharmaceutical products. A new thermal imaging based method, thermal analysis by structural characterization (TASC), was used as a thermoptometeric tool in conjunction with data analysis software to detect the melting point depression and post-melting dissolution of felodipine particles screened over thin spin-coated films of ten polymers commonly used in the pharmaceutical field. On the polymeric substrates the drug showed different degrees of melting point reduction, reflecting their different levels of polymer-drug miscibility. Using TASC to detect melting point depression is significantly (20-40 times) faster than the conventional DSC method without loss of the sensitivity of detection. The quantity of the material required for the screening is less than 1/1000th of the material used in conventional DSC tests which significantly reduce the material wastage. Isothermal TASC tests and IR imaging confirmed the occurrence of thermal dissolution of the drug in the polymer for more miscible pairs. The real-time stability tests validate the accuracy of the polymer-drug miscibility screening results. These results demonstrate TASC as a promising screening tool for rapidly selecting the polymeric excipients for pharmaceutical formulations development

    Using induced chlorophyll production to monitor the physiological state of stored potatoes (Solanum tuberosum L.)

    Get PDF
    A Visible/Near-infrared (Vis/NIR) spectrometer equipped with a fibre-optic probe was used to stimulate and measure chlorophyll production in potato tubers, at low levels that produce no visible greening in the skin. Subtle responses to changes in the light stimulus were also tracked. When used with a static experimental setup, these measurements are precise. However, the technique is very sensitive to the exact geometry of the tuber-probe arrangement, and careful positioning of the probe is crucial. Complementary studies established that tissue under the apical buds (‘eyes’) has greater capacity to produce chlorophyll than other locations on the tuber surface. A long-term study of multiple tubers suggested that different cultivars behave differently in terms of the rate of chlorophyll production. These behavioural differences may be related to the batch dormancy status; validating this potential relationship is the focus of ongoing work

    Release of cell wall phenolic esters during hydrothermal pretreatment of rice husk and rice straw

    Get PDF
    Background: Rice husk and rice straw represent promising sources of biomass for production of renewable fuels and chemicals. For efficient utilisation, lignocellulosic components must first be pretreated to enable efficient enzymatic saccharification and subsequent fermentation. Existing pretreatments create breakdown products such as sugar-derived furans, and lignin-derived phenolics that inhibit enzymes and fermenting organisms. Alkali pretreatments have also been shown to release significant levels of simple, free phenolics such as ferulic acid that are normally esterified to cell wall polysaccharides in the intact plant. These phenolics have recently been found to have considerable inhibitory properties. The aim of this research has been to establish the extent to which such free phenolic acids are also released during hydrothermal pretreatment of rice straw (RS) and rice husk (RH). Results: RS and RH were subjected to hydrothermal pretreatments over a wide range of severities (1.57–5.45). FTIR analysis showed that the pretreatments hydrolysed and solubilised hemicellulosic moieties, leading to an enrichment of lignin and crystalline cellulose in the insoluble residue. The residues also lost the capacity for UV autofluorescence at pH 7 or pH 10, indicating the breakdown or release of cell wall phenolics. Saponification of raw RS and RH enabled identification and quantification of substantial levels of simple phenolics including ferulic acid (tFA), coumaric acid (pCA) and several diferulic acids (DiFAs) including 8-O-4′-DiFA, 8,5′-DiFA and 5,5′-DiFA. RH had higher levels of pCA and lower levels of tFA and DiFAs compared with RS. Assessment of the pretreatment liquors revealed that pretreatment-liberated phenolics present were not free but remained as phenolic esters (at mM concentrations) that could be readily freed by saponification. Many were lost, presumably through degradation, at the higher severities. Conclusion: Differences in lignin, tFA, DiFAs and pCA between RS and RH reflect differences in cell wall physiology, and probably contribute to the higher recalcitrance of RH compared with RS. Hydrothermal pretreatments, unlike alkali pretreatments, release cinnamic acid components as esters. The potential for pretreatment-liberated phenolic esters to be inhibitory to fermenting microorganisms is not known. However, the present study shows that they are found at concentrations that could be significantly inhibitory if released as free forms by enzyme activity

    Characterisation of lignocellulosic sugars from municipal solid waste residue.

    Get PDF
    Municipal solid waste (MSW) contains significant quantities of plant-derived carbohydrates which have the potential to be exploited as a biomass source. This study evaluated the chemical composition and fractionation of MSW water-insoluble organic matter remaining after recycling of other components (MSWR). The organic matter was prepared as a dry, alcohol insoluble residue (MSWR-AIR, comprising w = 6% of original MSW) and size fractionated into fractions A, B, C & D. Carbohydrates were present in all the sub-fractions, comprising up to w = 54%; their complexity was also assessed by FT-IR spectroscopy. The lignin content in the samples ranged from w = 11–22%. The most carbohydrate-rich subfraction (C; w = 4% original MSW) was sequentially extracted to provide information on the likely constituent cell wall-derived polymers, sugar compositions and uronic acid content. The results indicate that approximately w = 25% of the MSWR-AIR comprises glucose, which appears to be mostly cellulosic in origin. The results are discussed in relation to the potential for exploitation

    Role of CX3CR1+ cell in the protection of the intestinal mucosa

    Get PDF
    During infection intestinal CX3CR1+ cells can either extend transepithelial cellular processes to sample luminal bacteria or, very early after infection migrate into the intestinal lumen to capture bacteria. However, up to date, the biological relevance of the intraluminal migration of CX3CR1+ cells remained to be determined. We addressed this by using a combination of mouse strains differing in their ability to carry out CX3CR1-mediated sampling and intraluminal migration. We observed that, the number of S. Typhimurium traversing the epithelium did not differ between sampling-competent/migration-competent C57BL/6 and sampling-deficient/migration-competent Balb/c mice. By contrast, in sampling-deficient/migration-deficient CX3CR1-/- mice the numbers of S. Typhimurium penetrating the epithelium were significantly higher. However, in these mice the number of invading S. Typhimurium was significantly reduced after the adoptive transfer of CX3CR1+ cells directly into the intestinal lumen, consistent with intraluminal CX3CR1+ cells preventing S. Typhimurium from infecting the host. This interpretation was also supported by a higher bacterial faecal load in CX3CR1+/gfp compared to CX3CR1gfp/gfp mice following oral infection. Furthermore, by using real time in vivo imaging we observed that CX3CR1+ cells migrated into the lumen moving through paracellular channels within the epithelium. Also, we reported that the absence of CX3CR1-mediated sampling did not affect antibody responses to a non-invasive S. Typhimurium strain that specifically targeted the CX3CR1-mediated entry route. These data showed that the rapidly deployed CX3CR1+ cell-based mechanism of immune-exclusion is a defence mechanism against pathogens that complements the mucous and secretory (s)IgA antibody-mediated system in the protection of intestinal mucosal surface

    CX3CR1+ Cell–Mediated Salmonella Exclusion Protects the Intestinal Mucosa during the Initial Stage of Infection

    Get PDF
    During Salmonella Typhimurium infection, intestinal CX3CR1(+) cells can either extend transepithelial cellular processes to sample luminal bacteria or, very early after infection, migrate into the intestinal lumen to capture bacteria. However, until now, the biological relevance of the intraluminal migration of CX3CR1(+) cells remained to be determined. We addressed this by using a combination of mouse strains differing in their ability to carry out CX3CR1-mediated sampling and intraluminal migration. We observed that the number of S. Typhimurium traversing the epithelium did not differ between sampling-competent/migration-competent C57BL/6 and sampling-deficient/migration-competent BALB/c mice. In contrast, in sampling-deficient/migration-deficient CX3CR1(-/-) mice the numbers of S. Typhimurium penetrating the epithelium were significantly higher. However, in these mice the number of invading S. Typhimurium was significantly reduced after the adoptive transfer of CX3CR1(+) cells directly into the intestinal lumen, consistent with intraluminal CX3CR1(+) cells preventing S. Typhimurium from infecting the host. This interpretation was also supported by a higher bacterial fecal load in CX3CR1(+/gfp) compared with CX3CR1(gfp/gfp) mice following oral infection. Furthermore, by using real-time in vivo imaging we observed that CX3CR1(+) cells migrated into the lumen moving through paracellular channels within the epithelium. Also, we reported that the absence of CX3CR1-mediated sampling did not affect Ab responses to a noninvasive S. Typhimurium strain that specifically targeted the CX3CR1-mediated entry route. These data showed that the rapidly deployed CX3CR1(+) cell-based mechanism of immune exclusion is a defense mechanism against pathogens that complements the mucous and secretory IgA Ab-mediated system in the protection of intestinal mucosal surface

    Development of a Simple Mechanical Screening Method for Predicting the Feedability of a Pharmaceutical FDM 3D Printing Filament

    Get PDF
    Purpose: The filament-based feeding mechanism employed by the majority of fused deposition modelling (FDM) 3D printers dictates that the materials must have very specific mechanical characteristics. Without a suitable mechanical profile, the filament can cause blockages in the printer. The purpose of this study was to develop a method to screen the mechanical properties of pharmaceutically-relevant, hot-melt extruded filaments to predetermine their suitability for FDM. Methods: A texture analyzer was used to simulate the forces a filament is subjected to inside the printer. The texture analyzer produced a force-distance curve referred to as the flexibility profile. Principal Component Analysis and Correlation Analysis statistical methods were then used to compare the flexibility profiles of commercial filaments to in-house made filaments. Results: Principal component analysis showed clearly separated clustering of filaments that suffer from mechanical defects versus filaments which are suitable for printing. Correlation scores likewise showed significantly greater values with feedable filaments than their mechanically deficient counterparts. Conclusion: The screening method developed in this study showed, with statistical significance and reproducibility, the ability to predetermine the feedability of extruded filaments into an FDM printer

    Elucidating pathways of Toxoplasma gondii invasion in the gastrointestinal tract: involvement of the tight junction protein occludin

    Get PDF
    Toxoplasma gondii is an obligate intracellular parasite infecting one third of the world’s population. The small intestine is the parasite’s primary route of infection, although the pathway of epithelium transmigration remains unclear. Using an in vitro invasion assay and live imaging we showed that T. gondii (RH) tachyzoites infect and transmigrate between adjacent intestinal epithelial cells in polarized monolayers without altering barrier integrity, despite eliciting the production of specific inflammatory mediators and chemokines. During invasion, T. gondii co-localized with occludin. Reducing the levels of endogenous cellular occludin with specific small interfering RNAs significantly reduced the ability of T. gondii to penetrate between and infect epithelial cells. Furthermore, an in vitro invasion and binding assays using recombinant occludin fragments established the capacity of the parasite to bind occludin and in particular to the extracellular loops of the protein. These findings provide evidence for occludin playing a role in the invasion of T. gondii in small intestinal epithelial cells
    corecore